

Shae McFadden^{1,2,3}, Myles Foley², Mario D’Onglia³, Chris Hicks²,
Vasilios Mavroudis², Nicola Paoletti¹, Fabio Pierazzi³

¹King’s College London, ²The Alan Turing Institute,
³University College London

Thousands of new apps per day

Limited capacity for manual review

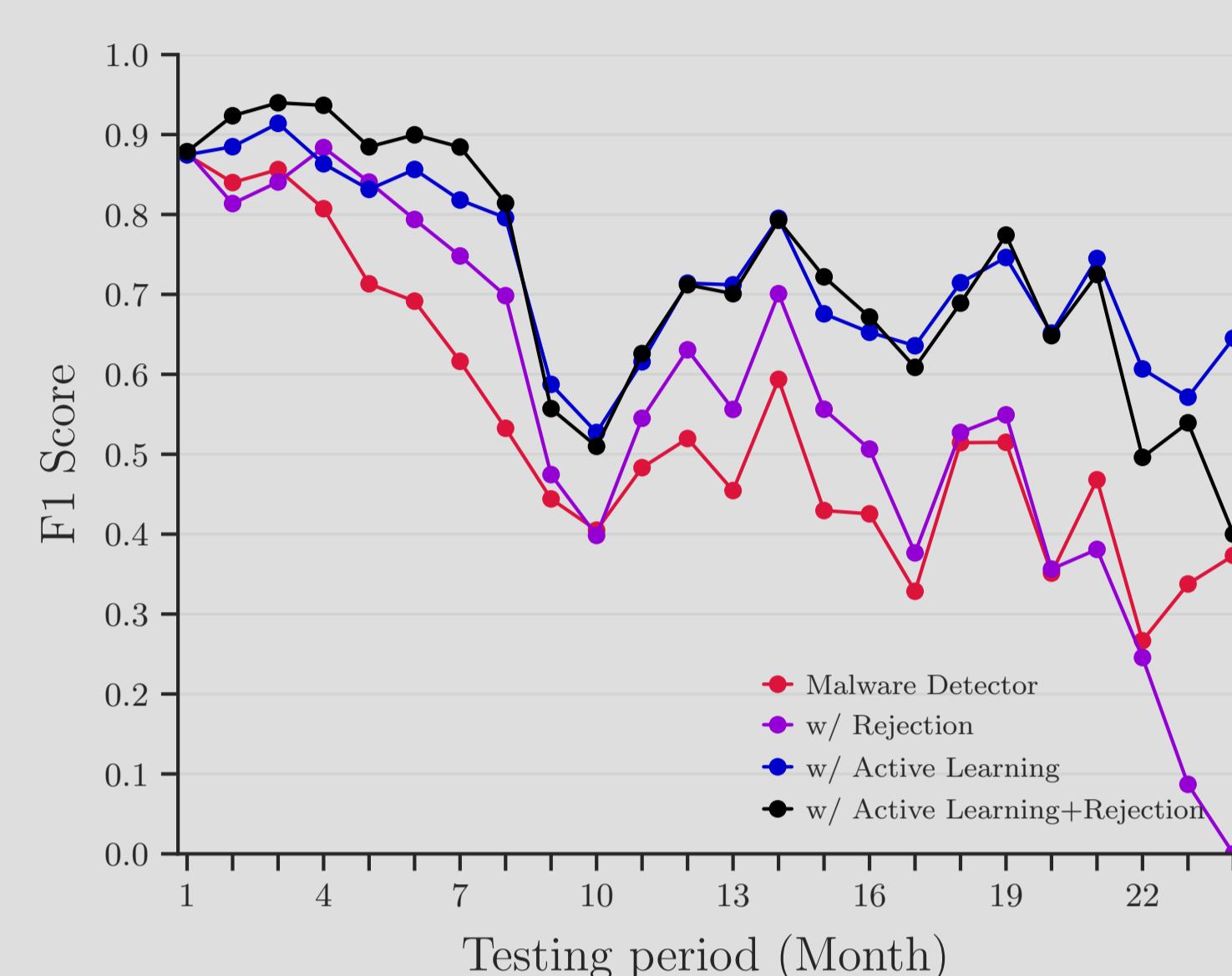
Concept Drift

ML Assumption: data is stationary

Reality: apps constantly evolve

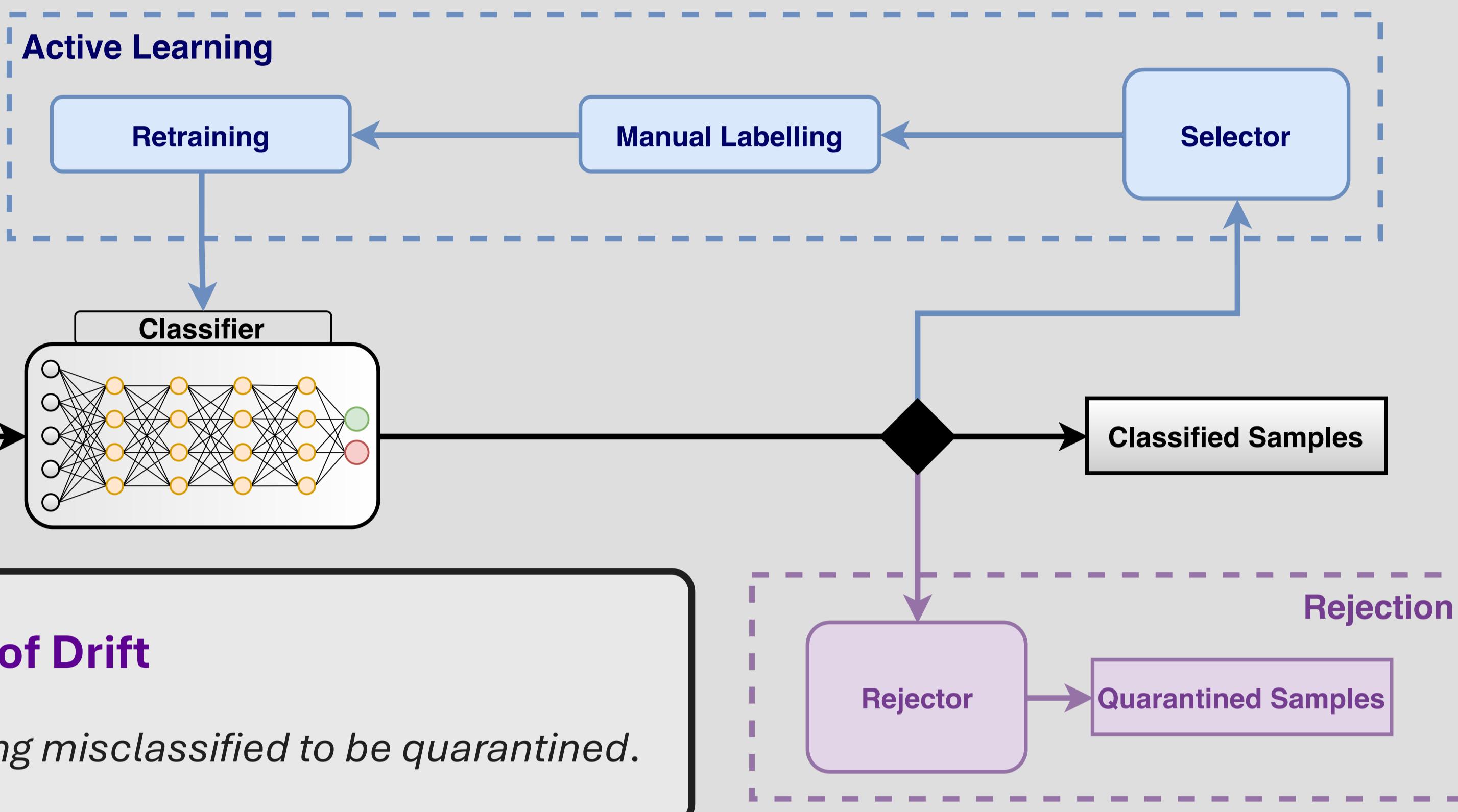
Result: Performance degradation

Yesterday’s training data becomes less relevant for today’s threats.



Active Learning: Adapting the Detector to Drift

Selects an informative subset of new samples for retraining.



Rejection: Limiting the Impact of Drift

Selects samples at a high-risk of being misclassified to be quarantined.

Key Observation

Existing approaches treat active learning, rejection, and detection independently

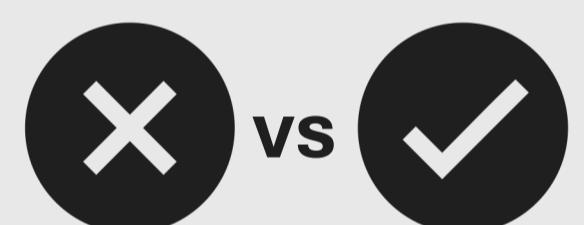
Intuition

Treat malware detection as a **unified** decision-making problem and use deep reinforcement learning

Rewards

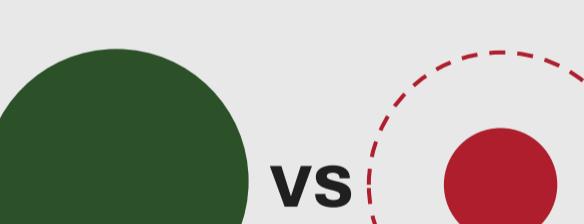
Accuracy

Provides the foundation
+1 correct, -1 incorrect



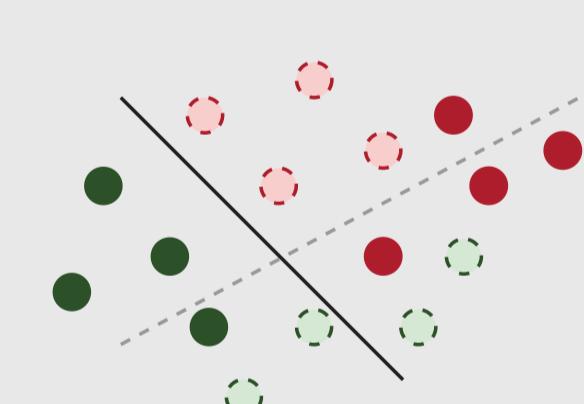
Class Imbalance

Upscales rewards for malware based on distribution (~10%)



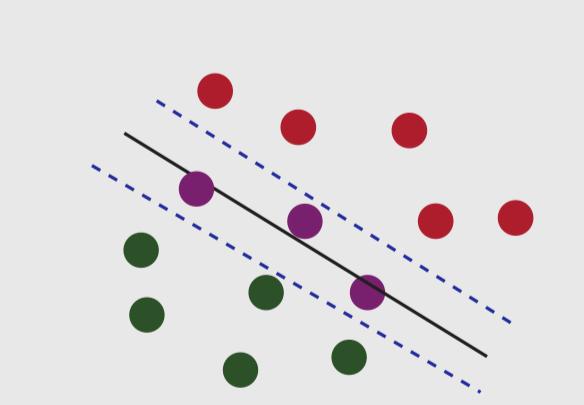
Temporal Robustness

Upscales rewards for samples based on temporal position



Rejection

Balances rewards for rejection relative to misclassification risk



Formulation (MD-MDP)

One-step MDP (Contextual Bandit)
Corrects spurious dependencies of prior work, ICMDP [Appl. Intell.’20]

Action Space

✓ **Classify as Goodware**
✗ **Classify as Malware**
? **Reject → Active Learning**

Experimental

Feature Spaces: Drebin (10,000D) and Ramda (379D)

Datasets: Hypercube (2021-2023) and Transcendent (2014-2018)

AMD Baselines: Drebin (SVM),

DeepDrebin (MLP), and Ramda (MLP+VAE)

DRL Baselines: ICMDP and DCBs

MDP Comparison

Same CO policy architectures
MD-MDP outperforms ICMDP

97% settings

45% significant

+1.94 ΔAUT

Classifier Comparison

Same AL and rejection budgets
DRMD outperforms Baselines

90% settings

79% significant

+8.66 ΔAUT

Pipeline Comparison

Same AL and rejection budgets
DRMD outperforms Baselines

81% settings

68% significant

+10.90 ΔAUT

Takeaways

- 1) Adaptive decision-making, not just classification
- 2) One-step MDP formulation
- 3) Concept drift-aware DRL
- 4) Integration that matters
- 5) A starting point for future research

