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Thousands of new 
 apps per day

Limited capacity for 
 manual review

Concept Drift

  ML Assumption: data is stationary

  Reality: apps constantly evolve

  Result: Performance degradation

 Yesterday’s training data becomes less  
 relevant for today’s threats.

Rejection: Limiting the Impact of Drift

 Selects samples at a high-risk of being misclassified to be quarantined.

Active Learning: Adapting the Detector to Drift

 Selects an informative subset of new samples for retraining.
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 Key Observation
 Existing approaches treat active learning, rejection, and detection independently
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Action Space
 ✓ Classify as Goodware
 ✗ Classify as Malware
  ? Reject → Active Learning

Formulation (MD-MDP)
 One-step MDP (Contextual Bandit)

 Corrects spurious dependencies of  
 prior work, ICMDP [Appl. Intell.’20]

Intuition
 Treat malware detection as a unified decision-making problem and use 
 deep reinforcement learning

Rewards

 Accuracy
 Provides the foundation          vs
 +1 correct, -1 incorrect

 Class Imbalance
 Upscales rewards for malware          vs
 based on distribution (~10%)

 Temporal Robustness
 Upscales rewards for samples 
 based on temporal position

 Rejection
 Balances rewards for rejection
 relative to misclassification risk

MDP Comparison
 Same CO policy architectures
 MD-MDP outperforms ICMDP

97%
settings

45%
significant

+1.94
ΔAUT

Pipeline Comparison
 Same AL and rejection budgets
 DRMD outperforms Baselines

81%
settings

68%
significant

+10.90
ΔAUT

Classifier Comparison
 Same AL and rejection budgets
 DRMD outperforms Baselines

90%
settings

79%
significant

+8.66
ΔAUT
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Takeaways
  1) Adaptive decision-making, not just classification
  2) One-step MDP formulation
  3) Concept drift-aware DRL
  4) Integration that matters
  5) A starting point for future research

Experimental
 Feature Spaces: Drebin (10,000D) and 
  Ramda (379D)

 Datasets: Hypercube (2021-2023) and 
  Transcendent (2014-2018)
 AMD Baselines: Drebin (SVM), 
  DeepDrebin (MLP), and Ramda (MLP+VAE)
 DRL Baselines: ICMDP and DCBs


