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Concept Drift Active Learning: Adapting the Detector to Drift

Thousands of new

apps perda
PRSP Y ML Assumption: data is stationary Selects an informative subset of new samples for retraining.
Reality: apps constantly evolve

Result: Performance degradation

Active Learning

Limited capacity for Yesterday’s training data becomes less

relevant for today’s threats.
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Rejection: Limiting the Impact of Drift
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Selects samples at a high-risk of being misclassified to be quarantined.
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Key Observation . e . .
Treat malware detection as a unified decision-making problem and use

Existing approaches treat active learning, rejection, and detection independently deep reinforcement learning

Formulation (MD-MDP) MDP Comparison

One-step MDP (Contextual Bandit)

Rewards 45%

significant

+1.94
AAUT

97%

Same CO policy architectures settings

Accuracy MD-MDP outperforms ICMDP

Provides the foundation
+7 correct, -1 incorrect

Corrects spurious dependencies of
prior work, ICMDP [Appl. Intell.’20]
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Classifier Comparison 90%

settings

79%

significant

+8.66

Same AL and rejection budgets AAUT

Action Space DRMD outperforms Baselines

Class Imbalance

Upscales rewards for malware

T v Classify as Goodware
based on distribution (~10%)

X Classify as Malware

? Reject » Active Learning Pipeline Comparison

81% 68% +10.90

Temporal Robustness Same AL and rejection budgets

Rejection

Upscales rewards for samples

based on temporal position Experimental

Feature Spaces: Drebin (10,000D) and
Ramda (379D)

Datasets: Hypercube (2021-2023) and
Transcendent (2014-2018)

AMD Baselines: Drebin (SVM),
DeepDrebin (MLP), and Ramda (MLP+VAE)
DRL Baselines: ICMDP and DCBs

Rejection
Balances rewards for rejection
relative to misclassification risk

settings  significant  AAUT

DRMD outperforms Baselines

Takeaways

1) Adaptive decision-making, not just classification
2) One-step MDP formulation

3) Concept drift-aware DRL

4) Integration that matters

5) A starting point for future research
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One-Step PPO Training (using Clipped Value & Policy Loss)
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