
DRMD: Deep Reinforcement Learning for Malware Detection under Concept Drift

Shae McFadden^{1,2,3}, Myles Foley², Mario D’Onghia³, Chris Hicks²,
Vasilios Mavroudis², Nicola Paoletti¹, Fabio Pierazzi³

¹King’s College London, ²The Alan Turing Institute, ³University College London

Partially Funded By

National Cyber
Security Centre
a part of GCHQ

EPSRC
Engineering and Physical Sciences
Research Council

AAAI-26 / IAAI-26 / EAAI-26
JANUARY 20-27, 2026 | SINGAPORE

Android Malware Detection

Thousands of new apps per day

Limited capacity for manual review

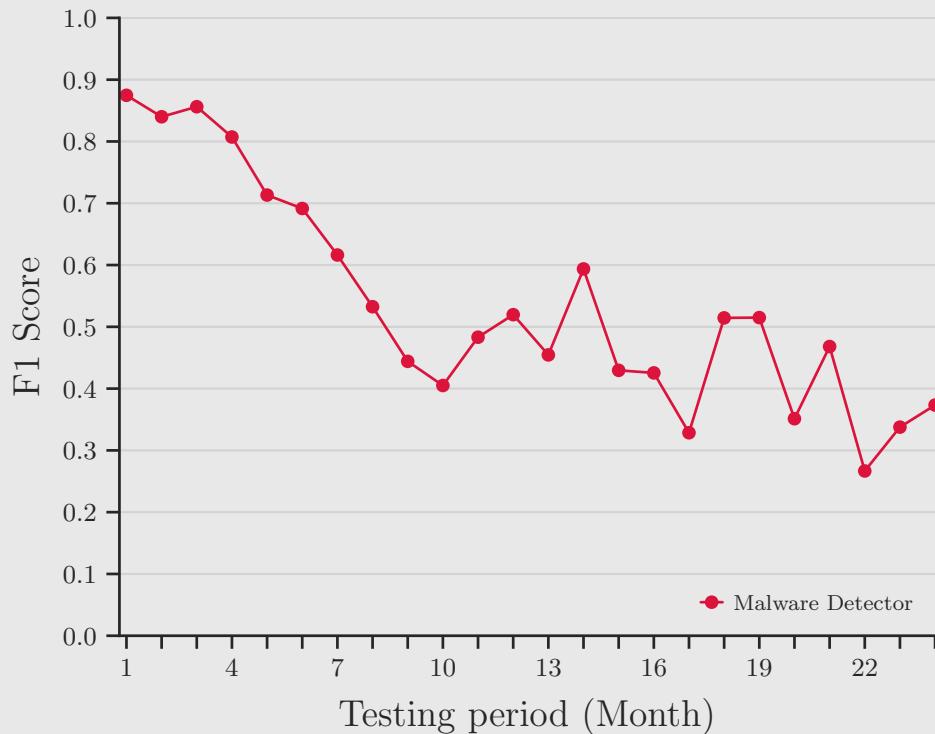
Concept Drift

ML Assumption: data is stationary over time

Reality: apps constantly evolve

Result: Performance degradation

Yesterday's training data becomes less relevant for today's threats.



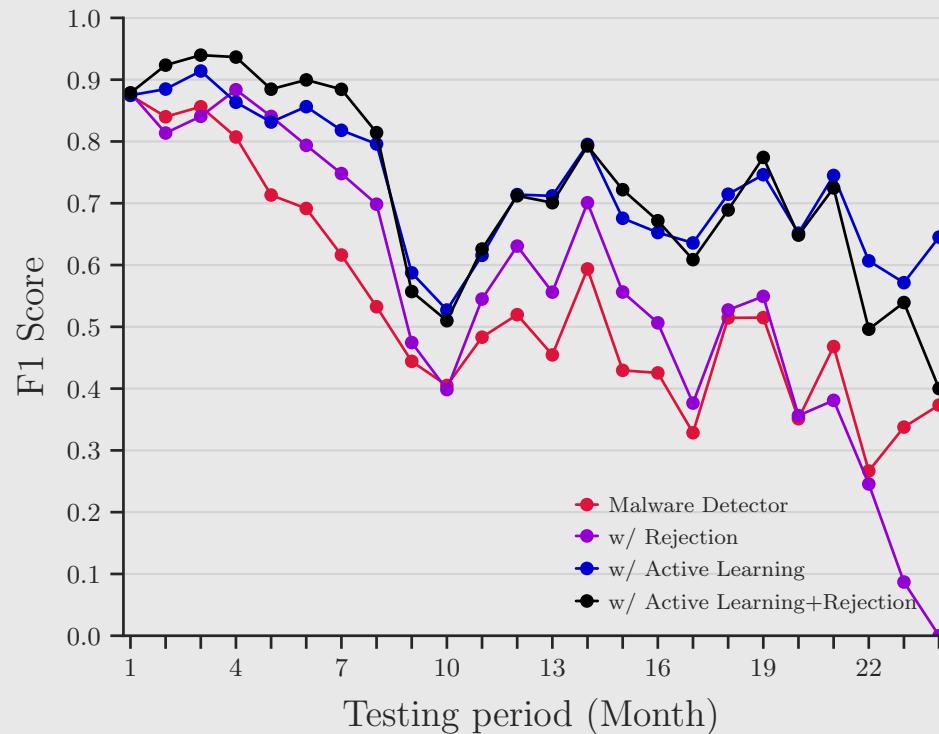
Concept Drift Mitigations

Rejection: limiting the impact of drift

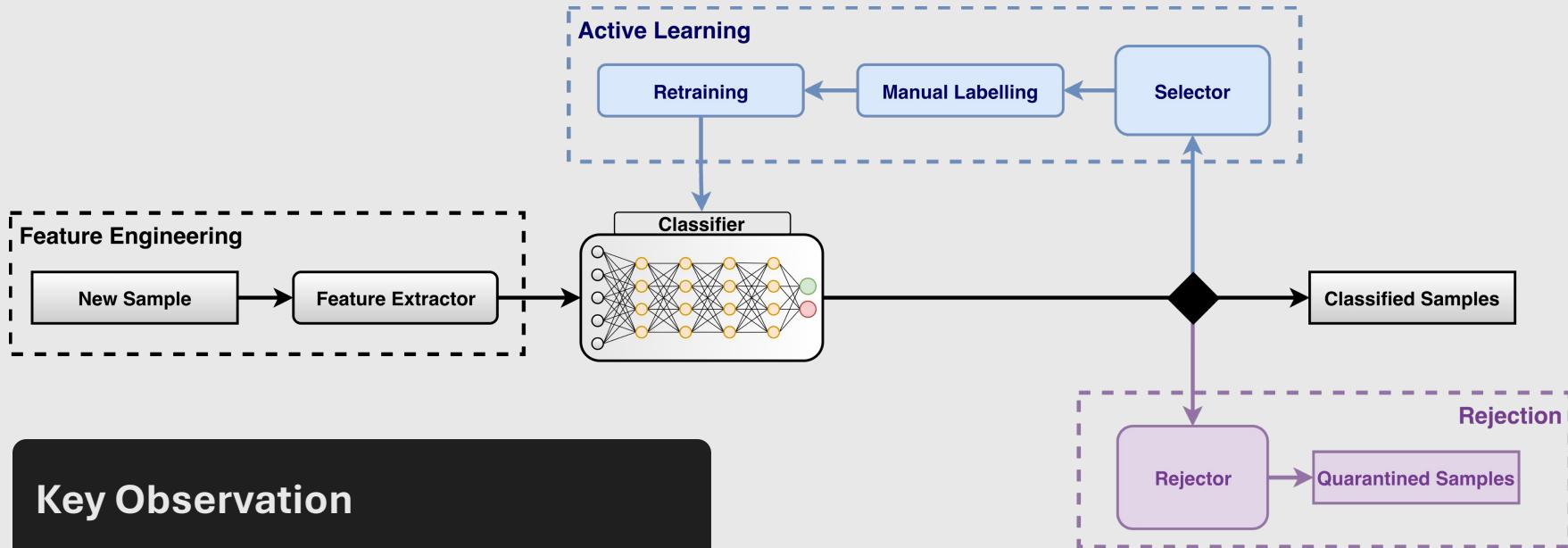
Selects samples at a high-risk of being misclassified to be quarantined.

Active Learning: adapting the detector to drift

Selects an informative subset of new samples for manual labelling and retraining.



Malware Detection Pipeline



Key Observation

Existing approaches treat active learning, rejection, and detection independently

DRL-Based Malware Detection

Intuition

Treat malware detection as a **unified** decision-making problem

Not just "is this malware?" but also "am I certain?"

Formulation (MD-MDP)

One-step MDP (Contextual Bandit)
Corrects spurious dependencies of prior work,
ICMDP [Appl. Intell.'20]

Action Space

✓ Classify as Goodware

✗ Classify as Malware

? Reject → Active Learning

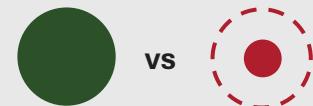
Rewards

Accuracy

*Provides the foundation
+1 correct, -1 incorrect*

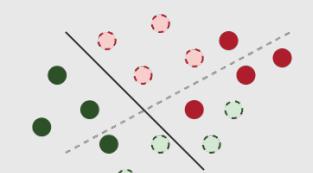
Class Imbalance

*Upscales rewards for malware
based on distribution (~10%)*



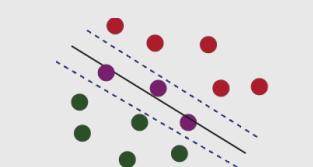
Temporal Robustness

*Upscales rewards for samples
based on temporal position*

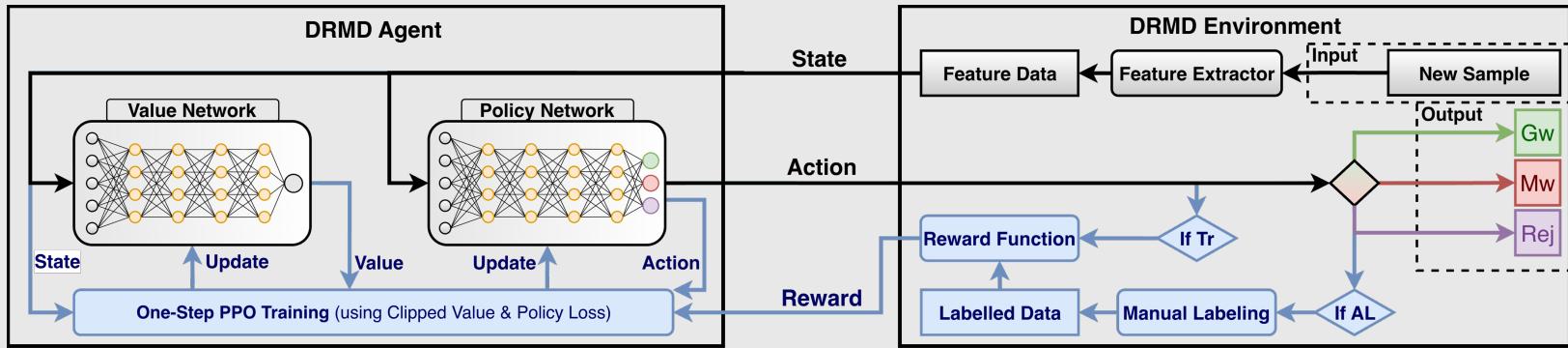


Rejection

*Balances rewards for rejection
relative to misclassification risk*



DRMD Pipeline



Proximal Policy Optimization (PPO)

Learns policy from experience through clipped updates

Classification-Only Policy

DRMD in existing pipelines

Classification-Rejection Policy

Unified Malware Detection

Experimental Settings

Datasets

Transcendent (Tr)

2014-2018 | 259,230 apps | ~10% malware

Hypercube (Hc)

2021-2023 | 159,839 apps | ~10% malware

Feature Spaces

Drebin (D)

10,000-D sparse binary vector including: hardware and app components; requested and used permissions; filtered intents; restricted and used API calls; and network addresses

Ramda (R)

379-D binary vector including: permissions, intents, and sensitive APIs.

Evaluation

Time-aware

Train on first year, test on remaining years using monthly periods for active learning and rejection.

AUT Metric

Area Under Time (AUT) of the F_1 Score, measures performance stability over time under concept drift.

Baselines

Drebin (SVM)

DeepDrebin (MLP)

Ramda (VAE+MLP)

SL-DRMD (supervised)

Classification-Only Policy

Classifier Comparison

Same AL and rejection budgets
DRMD outperforms Baselines

90%

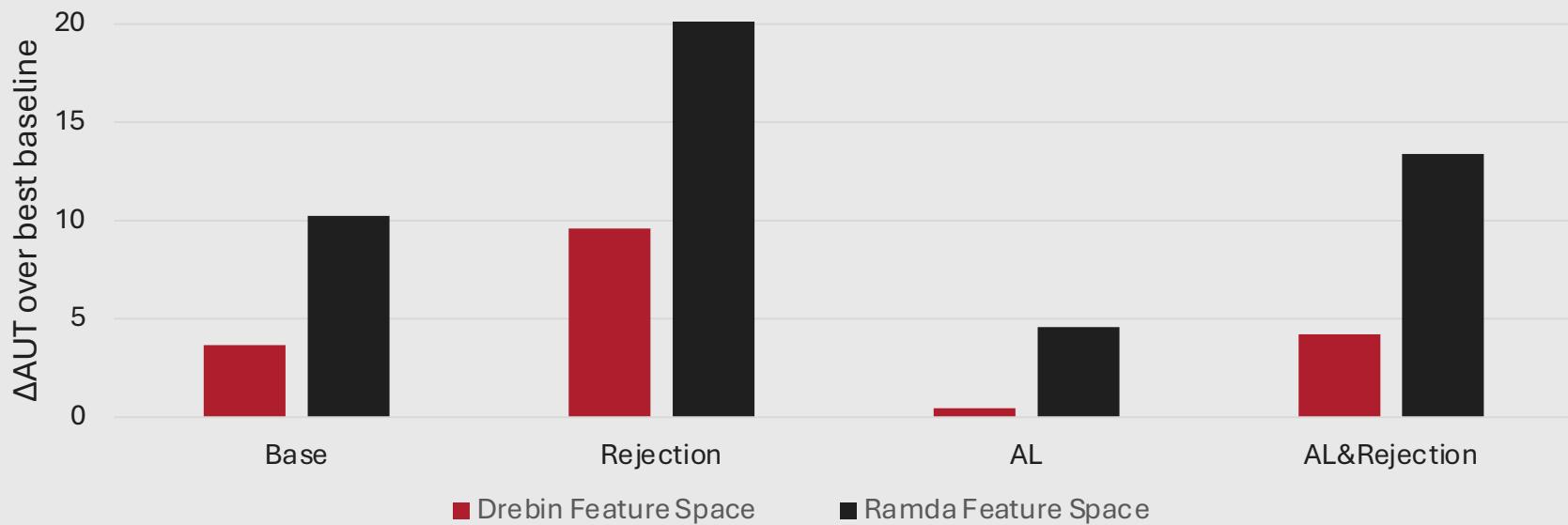
settings

79%

statistically significant

+8.66

ΔAUT



Classification-Rejection Policy

Pipeline Comparison

Same AL and rejection budgets
DRMD outperforms Baselines

81%

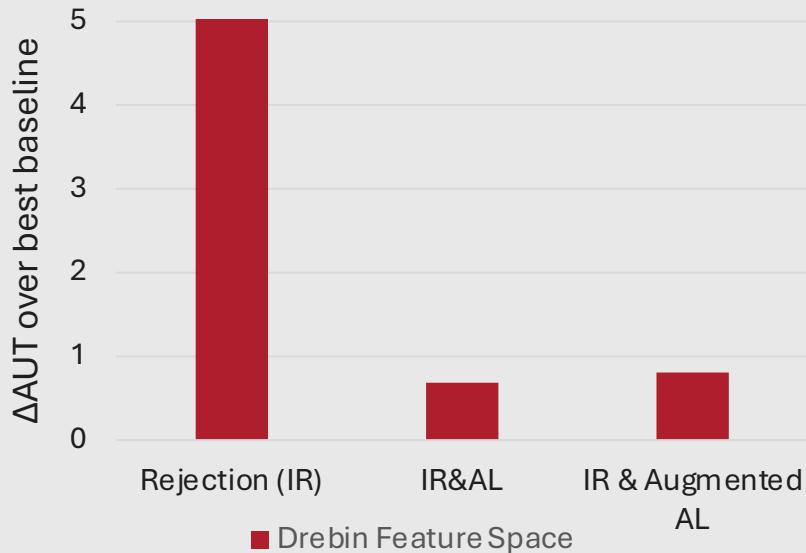
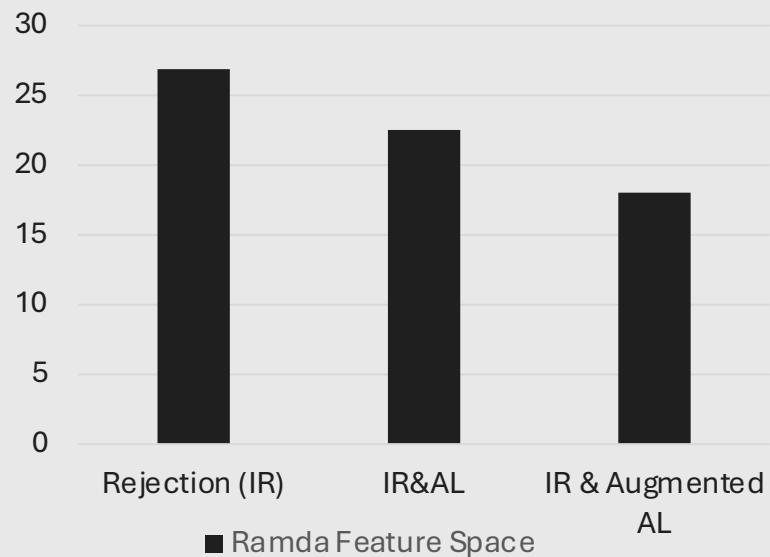
settings

68%

statistically significant

+10.90

ΔA_{UT}



MD-MDP vs ICMDP

ICMDP (Prior Work)

Used in *DQNimb* [Appl. Intell.'20] & *SINNER* [Info.'24]

- ✗ Episodes span multiple samples
- ✗ State transitions can create correlations between independent samples
- ✗ Does not consider concept drift or mitigations

MD-MDP (Our Approach)

DRMD

- ✓ One-step MDP
- ✓ Each sample is an independent episode
- ✓ Drift-aware reward design that integrates rejection and active learning

Formulation Comparison

Same architectures using CO policy
MD-MDP outperforms ICMDP

97%

settings

45%

statistically significant

+1.94

Δ AUT

One-Step PPO vs DCBs

Deep Contextual Bandits (DCBs)

NeuralTS [ICLR'21] & *NeuralUCB* [ICML'20]

- ✓ Each sample is an independent
- ✗ Updates are performed over the history of all experiences
- ✗ Retains experiences from past samples

One-Step PPO

DRMD

- ✓ Each sample is an independent
- ✓ Updates are performed over new experiences
- ✓ Uses temporal sliding window of samples to generate new experiences

Approach Comparison

Same rewards using CO policy
One-Step PPO outperforms DCBs

100%

settings

100%

statistically significant

+9.77

ΔAUT

Key Takeaways

1. Adaptive Decision-Making, Not Just Classification

Learning what to predict and when to abstain in one policy

2. One-Step MDP Formulation

Treats samples independently to avoid correlation between samples

3. Concept Drift-Aware DRL

Reward structure captures spatial and temporal dynamics

4. Integration Matters

Integrated rejection and AL can act in real time and adapt as the agent does

+8.66 AUT classification-only policy

+10.90 AUT classification-rejection policy

Across 172 experimental settings

DRMD: Deep Reinforcement Learning for Malware Detection under Concept Drift

Shae McFadden^{1,2,3}, Myles Foley², Mario D’Onghia³, Chris Hicks², Vasilios Mavroudis²,
Nicola Paoletti¹, Fabio Pierazzi³

¹King’s College London, ²The Alan Turing Institute, ³University College London

AAAI-26 / IAAI-26 / EAAI-26
JANUARY 20-27, 2026 | SINGAPORE

Partially Funded By

National Cyber
Security Centre
a part of GCHQ

EPSRC

Engineering and Physical Sciences
Research Council