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Android Malware Detection

4 N (
Thousands of new Limited capacity
apps per day for manual review
\_ / .
-

Concept Drift

ML Assumption: data is stationary over time
Reality: apps constantly evolve
Result: Performance degradation

Yesterday’s training data becomes less
relevant for today’s threats.

F1 Score

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

@ Malware Detector

7 10 13 16 19 22

Testing period (Month)



Concept Drift Mitigations

\.

Rejection:
limiting the impact of drift

Selects samples at a high-risk of being
misclassified to be quarantined.

\.

Active Learning:
adapting the detector to drift

Selects an informative subset of new samples
for manual labelling and retraining.
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Malware Detection Pipeline

: Feature Engineering

Active Learning

Retraining

Classifier ]

Manual Labelling

New Sample —)[ Feature Extractor

Key Observation

Existing approaches treat active learning, rejection, and
detection independently
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DRL-Based Malware Detection
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Intuition

Rewards

Treat malware detection as a unified decision-making Accuracy

problem Provides the foundation

Not just "is this malware?" but also "am | certain?" +1 correct, -1 incorrect

Formulation (MD-MDP) Class Imbalance
Upscales rewards for malware
One-step MDP (Contextual Bandit) based on distribution (~10%)

Corrects spurious dependencies of prior work,

ICMDRP [Appl. Intell.’20] T S

Upscales rewards for samples

Action Space based on temporal position
v Classify as Goodware

. Rejection
X Classify as Malware Balances rewards for rejection

? Reject > Active Learning relative to misclassification risk




DRMD Pipeline

DRMD Agent DRMD Environment
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One-Step PPO Training (using Clipped Value & Policy Loss) I Labelled Data Manual Labeling If AL
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Proximal Policy Optimization DRMD in existing pipelines
(PPO)

Classification-Only Policy

Learns policy from experience through . . . ) .
clipped updates Classification-Rejection Policy

Unified Malware Detection
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Experimental Settings
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Feature Spaces

Datasets Drebin (D)

10,000-D sparse binary vector including: hardware and app
components; requested and used permissions; filtered intents;
restricted and used API calls; and network addresses

Transcendent (Tr)
2014-2018 | 259,230 apps | ~10% malware

H rcu Hc

2022e2023b?5(9 8329 ~10% mal Ramda (R)

- | , appel s et 379-D binary vector including: permissions, intents, and
] L sensitive APlIs.
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Evaluation .

Baselines
Time-aware
Drebin (SVM)

Train on first year, test on remaining years using monthly periods for

active learning and rejection. DeepDrebin (MLP)
AUT Metric Ramda (VAE+MLP)
Area Under Time (AUT) of the F, Score, measures performance stability SL-DRMD (supervised)

over time under concept drift.




Classification-Only Policy

Classifier Comparison

90% 79%

Same AL and rejection budgets . o .
settings statistically significant

DRMD outperforms Baselines
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Classification-Rejection Policy

Pipeline Comparison

81% 68%

Same AL and rejection budgets . o .
settings statistically significant

DRMD outperforms Baselines
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MD-MDP vs ICMDP
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ICMDP (Prior Work)
Used in DQNIimb [Appl. Intell.’20] & SINNER [Info.24]

X Episodes span multiple samples

X State transitions can create correlations
between independent samples

X Does not consider concept drift or mitigations

S

MD-MDP (Our Approach)
DRMD

v/ One-step MDP
v/ Each sample is an independent episode

V' Drift-aware reward design that integrates
rejection and active learning

Formulation Comparison

Same architectures using CO policy
MD-MDP outperforms ICMDP

97%

settings

45%

statistically significant




One-Step PPO vs DCBs
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Deep Contextual Bandits (DCBs)
NeuralTS [ICLR’21] & NeuralUCB [ICML’20]

v/ Each sample is an independent

X Updates are performed over the history of all
experiences

X Retains experiences from past samples

One-Step PPO
DRMD

v Each sample is an independent

v Updates are performed over new experiences

v Uses temporal sliding window of samples to
generate new experiences

Approach Comparison

100%

Same rewards using CO policy .
settings

One-Step PPO outperforms DCBs

100%

statistically significant




Key Takeaways

( )

1. Adaptive Decision-Making, Not Just Classification
Learning what to predict and when to abstain in one policy

\ J
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2. One-Step MDP Formulation
Treats samples independently to avoid correlation between samples

. S
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3. Concept Drift-Aware DRL
Reward structure captures spatial and temporal dynamics

\ J
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4. Integration Matters
Integrated rejection and AL can act in real time and adapt as the agent does

\ J

+8.66 AUT classification-only policy

+10.90 AUT classification-rejection policy
Across 172 experimental settings
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