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RPAL Evaluation Framework

Experimental Settings 

Time-Stamped Data: The dataset consists of 129,728 applications, ranging from 2014–2016 
with a 10% malware distribution and is extracted to both Drebin[1] and MaMaDroid[2]. 


Time-Aware Evaluation: Tesseract[3] is used to perform the time-aware evaluations, using 
2014 data for training and 2015–2016 data for testing. 


Recovery Strategy: The recovery strategy is uncertainty sampling with 2%–16% sampling 
rates and the Tolerance Margin is set to 0.02 for all experiments.


Poisoning Strategy: The poisoning strategy is label-flip poisoning with enforced maintenance 
of class distribution and 2%–16% poisoning rates.

The RPAL framework utilizes Tolerance Margin, Intercept, and Recovery Rate to evaluate the 
recovery of a system.

Recovering From Poisoning

Drebin’s Superior Performance: Across the plots, MaMaDroid has better performance 2.5% 
and, Drebin has better performance 96.5% of the time with the remaining 1% being tied. 


MaMaDroid’s Superior Recovery Performance: Across, the table, out of the sixteen settings, 
MaMaDroid is better in eight setting with the remaining eight being mixed results.

Discussion

The feature abstraction has a significant impact on recovery, and a better-performing 
system does not equate to a better-recovering system.


Key Result: Feature

Higher poisoning rates of the training dataset result in a delayed intercept, this corresponds 
to a diminished return for increasing active learning rates and not in poisoning rates.

Key Result: Intercept

Novelty of this Research: To the best of our knowledge, we are the first to evaluate the 
recovery over time of a classification system from poisoning. 


Key Takeaway: Drift mitigation strategies can indeed facilitate recovery of the model, 
however, the speed of recovery heavily depends on the components of the system and data 
considered.

Conclusion
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Active Learning Rates
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The plots illustrate the impact of varying active learning rates on a fixed poisoning rate.

Diminishing Returns of Active Learning

Across the four active learning settings the diminishing returns of increased active learning 
rates can be observed against a fixed poisoning rate.

Poisoning Rates
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The plots show the impact of increasing poisoning rates against a fixed active learning rate.

Poisoned Performance Convergence Over Time

Across the four poisoning settings the same trend of converging on the vanilla performance 
over time can be observed.

Recovery Results Table

The table above displays the Intercept and Recovery Rate for all active learning sampling and 
poisoning rates.

Results Tolerance Margin = 0.02

Feature 
Extraction

Active 
Learning Rate Recovery Metric

Poisoning Rate
2% 4% 8% 16%

MaMaDroid

2%
Intercept (Month) 9 11 19 21
Recovery Rate (%) 75% 64% 83% 75%

4%
Intercept (Month) 9 11 11 22
Recovery Rate (%) 88% 64% 71% 67%

8%
Intercept (Month) 2 7 14 24
Recovery Rate (%) 74% 50% 64% 100%

16%
Intercept (Month) 3 12 16 21
Recovery Rate (%) 73% 85% 89% 75%

Drebin

2%
Intercept (Month) 9 16 21 >24
Recovery Rate (%) 62% 44% 50% 0%

4%
Intercept (Month) 8 12 19 >24
Recovery Rate (%) 82% 62% 33% 0%

8%
Intercept (Month) 7 8 14 >24
Recovery Rate (%) 78% 71% 64% 0%

16%
Intercept (Month) 4 10 14 19
Recovery Rate (%) 86% 80% 82% 67%

Speed of Recovery 
The Interept consistently increases when both rates are increased equally showing that 
poisoning has a stronger impact on intercept.
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Metric: Intercept
The first month where the poisoned model’s 
performance is within the Tolerance Margin.

Metric: Recovery Rate
The percentage of months that the poisoned 
model maintains within the Tolerance Margin 
after the Intercept.
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Parameter: Tolerance Margin
The margin on vanilla performance which 
denotes recovered performance if the poisoned 
model is within it.

Recovering From Poisoning

We introduce the following metrics to measure model recovery from poisoning

How to Compare Recovery Performance 

A system has better recovery if it has a sooner Intercept and a higher Recovery Rate. If only 
one of these conditions is true then it is a mixed result.


