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We introduce the following metrics to measure model recovery from poisonin Poisoned Performance Convergence Over Time
9 ry P 9 Across the four poisoning settings the same trend of converging on the vanilla performance
over time can be observed.
Parameter: Tolerance Margin RPAL -
The margin on vanilla performance which 0.9_ ,_
denotes recovered performance if the poisoned Recovery Rate 0.5 - - o TR
model is within it. . a0 \ \\
Intercept ' T A }
Metric: Intercept o . 2 | || Z
8 I = 0.4 - —— AL-8 = 0.4 —+— AL -8
The first month where the pOiSOned model’s « : 0.3 - —— Tolerance Margin 0.3 - —— Tolerance Margin
performance is within the Tolerance Margin. ! . o ; o N o j o
> . —i— - - 2 —— - -
time - —o— AL-8/P-38 . —a— AL-8/P-38
' —— AL-8/P-16 ' —o— AL-8/P-16
Metric: Recovery Rate . 0.0 . | | i | | ’I7 | | 1I0 | | 1I3 | | 1I6 | | 1I9 | | 2I2 | | 0.0 . | | ZIJL | | ’I7 | | 1I0 | | 1I3 | | 1I6 | | 1I9 | | 2I2 | 1
: — Vanilla Model . Testing period Testing period
The percentage of months that the poisoned Tolerance Margin
model maintains within the Tolerance Margin — Poisoned Model The plots show the impact of increasing poisoning rates against a fixed active learning rate.
after the Intercept.

How to Compare Recovery Performance

A system has better recovery if it has a sooner Intercept and a higher Recovery Rate. If only _

one of these conditions is true then it is a mixed result.

Diminishing Returns of Active Learning
Across the four active learning settings the diminishing returns of increased active learning

rates can be observed against a fixed poisoning rate.
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Experimental Settings

Drebin’s Superior Performance: Across the plots, MaMaDroid has better performance 2.5%

Time-Stamped Data: The dataset consists of 729,728 applications, ranging from 2074-2016 and, Drebin has better performance 96.5% of the time with the remaining 7% being tied.

with a 710% malware distribution and is extracted to both Drebin[1] and MaMaDroid[2].

Time-Aware Evaluation: Tesseract[3] is used to perform the time-aware evaluations, using MaMaDroid’s Superior Recovery Performance: Across, the table, out of the sixteen settings,
2014 data for training and 2015-2016 data for testing. MaMabDroid is better in eight setting with the remaining eight being mixed results.

Recovery Strategy: The recovery strategy is uncertainty sampling with 2%-16% sampling

Poisoning Strategy: The poisoning strategy is label-flip poisoning with enforced maintenance The feature abstraction has a significant impact on recovery, and a better-performing
of class distribution and 2%-76% poisoning rates. system does not equate to a better-recovering system.

Higher poisoning rates of the training dataset result in a delayed intercept, this corresponds
to a diminished return for increasing active learning rates and not in poisoning rates.

Speed of Recovery
The Interept consistently increases when both rates are increased equally showing that

poisoning has a stronger impact on intercept.
Conclusion

Novelty of this Research: To the best of our knowledge, we are the first to evaluate the
Recovery Metric recovery over time of a classification system from poisoning.
Intercept (Month) Key Takeaway: Drift mitigation strategies can indeed facilitate recovery of the model,
Recovery Rate (%) 75% 839%, 75% however, the speed of recovery heavily depends on the components of the system and data
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