

RPAL: Recovering Malware Classifiers from Data Poisoning using Active Learning

Shae McFadden, Zeliang Kan, Lorenzo Cavallaro, Fabio Pierazzi King's College London & University College London

Recovering From Poisoning

We introduce the following metrics to measure model recovery from poisoning

Parameter: Tolerance Margin

The margin on vanilla performance which denotes recovered performance if the poisoned model is within it.

Metric: Intercept

The **first month** where the poisoned model's performance is within the *Tolerance Margin*.

POOS Recovery Rate

Poisoning Rates

Poisoned Performance Convergence Over Time

Across the four poisoning settings the same trend of converging on the vanilla performance over time can be observed.

Metric: Recovery Rate

The **percentage of months** that the poisoned model **maintains** within the *Tolerance Margin* after the *Intercept*.

time

How to Compare Recovery Performance

A system has better recovery if it has a <u>sooner *Intercept* and a higher *Recovery Rate*. If only one of these conditions is true then it is a mixed result.</u>

RPAL Evaluation Framework

The RPAL framework utilizes *Tolerance Margin, Intercept,* and *Recovery Rate* to **evaluate the recovery of a system**.

The plots show the impact of increasing poisoning rates against a fixed active learning rate.

• Active Learning Rates

Diminishing Returns of Active Learning

Across the four active learning settings the diminishing returns of increased active learning rates can be observed against a fixed poisoning rate.

The plots illustrate the impact of varying active learning rates on a fixed poisoning rate.

Poisoning Setting 🗘 1...N 【 Recovery Setting 🗘 1...N 【 Testing period 🗘 1...N

Experimental Settings

Time-Stamped Data: The dataset consists of *129,728* applications, ranging from *2014–2016* with a *10%* malware distribution and is extracted to both Drebin[1] and MaMaDroid[2].

Time-Aware Evaluation: Tesseract[3] is used to perform the time-aware evaluations, using 2014 data for training and 2015–2016 data for testing.

Recovery Strategy: The recovery strategy is uncertainty sampling with 2%–16% sampling rates and the *Tolerance Margin* is set to 0.02 for all experiments.

Poisoning Strategy: The poisoning strategy is label-flip poisoning with enforced maintenance of class distribution and 2%–16% poisoning rates.

Recovery Results Table

Speed of Recovery

The *Interept* consistently increases when both rates are increased equally showing that poisoning has a stronger impact on intercept.

Results			Tolerance Margin = 0.02			
Feature	Active	Deeever Metrie	Poisoning Rate			
Extraction	Learning Rate	Recovery Metric	2%	4%	8%	16%
MaMaDroid	2%	Intercept (Month)	9	11	19	21
		Recovery Rate (%)	75%	64%	83%	75%
	4%	Intercept (Month)	9	11	11	22
		Recovery Rate (%)	88%	64%	71%	67%
	8%	Intercept (Month)	2	7	14	24
		Recovery Rate (%)	74%	50%	64%	100%
	16%	Intercept (Month)	3	12	16	21
		Recovery Rate (%)	73%	85%	89%	75%
Drebin	2%	Intercept (Month)	9	16	21	>24
		Recovery Rate (%)	62%	44%	50%	0%
	4%	Intercept (Month)	8	12	19	>24
		Recovery Rate (%)	82%	62%	33%	0%
	8%	Intercept (Month)	7	8	14	>24
		Recovery Rate (%)	78%	71%	64%	0%
	16%	Intercept (Month)	4	10	14	19
		Recovery Rate (%)	86%	80%	82%	67%

Discussion

Drebin's Superior Performance: Across the plots, MaMaDroid has better performance 2.5% and, <u>Drebin has better performance 96.5% of the time</u> with the remaining 1% being tied.

MaMaDroid's Superior Recovery Performance: Across, the table, out of the *sixteen* settings, MaMaDroid is better in *eight* setting with the <u>remaining *eight* being mixed results</u>.

Key Result: Feature

The **feature abstraction** has a significant **impact on recovery**, and a better-performing system does not equate to a better-recovering system.

Key Result: Intercept

Higher poisoning rates of the training dataset result in a **delayed intercept**, this corresponds to a diminished return for increasing active learning rates and not in poisoning rates.

Conclusion

Novelty of this Research: To the best of our knowledge, we are the first to evaluate the recovery *over time* of a classification system from poisoning.

Key Takeaway: Drift mitigation strategies *can* indeed facilitate recovery of the model, however, the speed of recovery *heavily* depends on the components of the system and data

The table above displays the *Intercept* and *Recovery Rate* for all active learning sampling and poisoning rates.

considered.

Shae McFadden, Zeliang Kan, Lorenzo Cavallaro, Fabio Pierazzi. 2023. *POSTER: RPAL-Recovering Malware Classifiers from Data Poisoning using Active Learning*. In CCS.

This research has been partially supported by a research service agreement with the Alan Turing Institute's AI for Cyber Defense (AICD) Research Centre, by the King's-China Scholarship Council Ph.D. Scholarship programme (K-CSC), by a Google ASPIRE research award, and a by EPSRC Grant EP/X015971/1.

References

[1] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck, and CERT Siemens. 2014. Drebin: Effective and Explainable Detection of Android Malware in your Pockert. In *Ndss*, Vol. 14. 23-26.

[2] Lucky Onwuzurike, Enrico Mariconti, Panagiotis Andriotis, Emiliano De Cristofaro, Gordon Ross, and Gianluca Stringhini. 2019. MaMaDroid: Detecting Android Malware by Building Markov Chains of Behabioral Models (Extended Version). ACM Transactions on Privacy and Security (TOPS) 22, 2 (2019), 1-34.

[3] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and Lorenzo Cavallaro. 2019. TESSERACT: Eliminating Experimental Bias in Malware Classification across Space. In 28th USENIX Security Symposium (USENIX Security 19). 729-746.