ING'S
College

LONDON

Wend ig O ThRIan Turing

Deep Reinforcement Learning for Denial-of-Service nstitute

Query Discovery in GraphQL

Supported by

NDIVy,

Shae McFadden' 2, Marcello Maugeri®, Chris Hicks?, Vasilios Mavroudis?, Fabio Pierazzi' »C % | Iniversita
1King’s College London, 2The Alan Turing Institute, sUniversity of Catani §§\Jg : -
g’s College London, 2The Alan Turing Institute, SUniversity of Catania 3 2 di Catania

Example Scenario
REST vs GraphQL

Imagine...

A third party application using an API to
access information from a Web service.

And...

You want to retrieve the email and
content of posts from a specific user.

1

O)
=
i -
O
e
()
LL
-
()
9
C
-
e
-
G
C
3
T /
W O DT
w = =
x & 9
()] ()]
7)) 7))
—~ —~
- &
, AT
; - A ,’\:\M
v i o
. ’ N V /% / 2 -m
o Y S
d
< < ®
- LL.
= © 5
NP S
k l,,‘,‘,\;,,. O
E S ‘.\,\,A__r
C o _
m

Image Credit: SDXL-Lightning

GraphQL APIs

Background

GraphQL

{ %colectica el Compqrq @ Conduit k coursera craftcms
CONFIGURE ONE
| | | |
sers (i1d: {id
u []

email

00 Meta Tech. \"A /%) Northflank +one medical PayPaI
NBC
pastes{

swo,mord @ ;tIJIELDQ Ncw ﬂnrk Travaux.com A TRIDGE y AVazco

G con ten t Cimes
— J oo GraphQL Adopters

/~> 1 o o ° .
@rueer| | &2 | |generation| |GetNinjas| |(GitHub| |5Goalify| [ggraphoms

“Just What You Need”
-Fetching

Adopters Source: https://landscape.graphqgl.org/

3 Image Credit: SDXL-Lightning

“Most commercial and large open-source
GraphQL APIs may be susceptible to
IDoS]| queries™

Wittern, Erik, et al. "An empirical study of GraphQL schemas”. ICSOC 2019.
4

Usage of DoS Defences
GraphQL

® Have used it
Know about it
@® Never heard of it

Averaged results from a 2022 survey
of over two-thousand developers.

Data Source: https://2022.stateofgraphgl.com/

Denial-of-Service
An Availability Attack

Utilizes a high volume of Utilizes pulses of traffic to
traffic to overwhelm the cause bottlenecks.?
target.
2W. Zhijun, et al. “Low-rate dos attacks, detection, defense, and challenges: A survey” Image Credit: SDXL-Lightning

6

Many past studies discuss the risk of
DoS in GraphQL1:3...
mentioning handcrafted queries.

Wittern, Erik, et al. "An empirical study of GraphQL schemas”. ICSOC 2019.
3Brito, Gleison, et al. "Migrating to GraphQL: A practical assessment”. SANER 2019.

14

Our Approach

Leverage Automate Discover
The capabilities of deep The creation and search Queries that pose a
reinforcement learning of GraphQL queries LDoS risk

The Potential Query Space

Minor Minor Mild

8 050 -0 -8
44

Risk Invalid Invalid Risk Invalid Invalid

Wendigo

Our Approach

Wendigo

A DRL-based black-
box approach for DoS
query discovery.

Duplication Capabilities
Field Duplication
Alias Overloading
Array-Based Query Batching

Attack Vector Source: N. Aleks, et al. Black Hat GraphQL.: Attacking Next Generation APIs.

9

Retrieval Capabilities
Object Limit Overriding
Circular Objects

Deep Reinforcement Learning

Preliminary
1 Agent
state reward action

S R, A
; Rt+|
5., | Environment

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
10

Proximal Policy Optimization
Agent

Update policy parameters .
S PPO Loss Clipped
via Gradient Ascent

Actor-Critic PPO | r -
Actio (a) v P b b.l.t R t. |
i i : robability Ratio
Pol
EVienment : Actor Network S S (Current policy) / (0ld policy)
J :)
S,a, IS , ,
() [Critic Network State Value V(s) > Advan.tage
& I i J Funtion

Update critic paramelers

Eample memorﬂ G 1 Value Loss

via Gradient Descent

Kalidas, A. P, et al. "Deep reinforcement learning for vision-based navigation of UAVs in avoiding stationary and mobile obstacles.” Drones (2023)

11

Black Box

Threat Model

Constraints
Only requires the

Motivation

Enables plug-and-play
security testing.

schema & connection
for an application.

12

States

Environment
Query
query { Query-to-State Mapping
uSers { Depth = 1 & Height = 1
email | Height = 2 [users-DUPL, State
' —| users _email-DUPL, —>
email ‘ { | | [1, 2’ ’ 2]
SN § users_pastes_content-ALIAS]
C1: content | Height = 2 Actual state
. representation
C2: content I Mapping for what every state location (Showing only present
} e represents values)
(Only showing mappings present in query)

Example query (Displaying the height and depth
of each location)

13

Actions

Environment

New State
[1,2, 1, 3]

{

Current State
11,212 |
Action
3 —>

Action Space Mapping

[add _users-DUPL,

add users emaill-DUPL,
add _users_pastes-DUPL,

add users pastes content-ALIAS,

remove_users-DUPL,
remove _users _email-DUPL,
remove_users_pastes-DUPL,

remove_users_pastes_content-ALIAS]

Mapping for what every action value represents
(Only showing relevant mappings)

14

New Query
query {

users { Depth = 1 & Height = 1
email | Height = 2
email |
pastes { Depth = 2 & Height = 1
C1: content | Height =3
C2: content |
C3: content |

7.,

New query produced by applying action to the
current state

Rewards

Environment

Query
query {
users {
email
email
pastes {

C1: content

C2: content

C3: content

7.

Target Application

Processes Query

The query produced by performing the action in
the last slide.

The target application

(isolated in a docker) receives the
query and returns the response.

15

Rewards

Response Time

The time it takes for the query to be
processed by the application is used
as the reward signal.

Evaluation

Experimental Settings

Random Testing and Evolutionary Testing for Fuzzing
GraphQL APIs

ASMA BELHADI and MAN ZHANG, Kristiania University College, Norway
ANDREA ARCURI, Kristiania University College and Oslo Metropolitan University, Norway

The Graph Query Language (GraphQL) is a powerful language for application programming interface (API)
‘manipulation in web services. It has been recently as an ive solution for ing the
limitations of RESTful APIs. This article introduces an automated solution for GraphQL API testing. We
present a full framework for automated API testing, from the schema extraction to test case generation.
In addition, we consider two kinds of testing: white-box and black-box testing. The white-box testing is
petformed when the source code of the GraphQL API is available. Our approach is based on evolutionary
search. Test cases are evolved to intelligently explore the solution space while maximizing code coverage
and fault-finding criteria. The black-box testing does not require access to the source code of the GraphQL
APL 1t is therefore of more general applicability, albeit it has worse performance. In this context, we use
a random search to generate GraphQL data. The proposed framework is implemented and integrated into
the open source EvOMASTER tool. With enabled white-box heuristics (i.e., white-box mode), experiments
on 7 open source GraphQL APIs and three search show statisti i p of
the evolutionary approach compared to the baseline random search. In addition, experiments on 31 online
GraphQL APIs reveal the ability of the black-box mode to detect real faults.

CCS Concepts: « Software and its engineering — Software verification and validation; Search-based
software engineering;
Additional Key Words and Phrases: GraphQL, 3 i i testing, ran-

dom, SBST, SBSE, fuzzing

ACM Reference format:

Asma Belhadi, Man Zhang, and Andrea Arcuri. 2024. Random Testing and Evolutionary Testing for Fuzzing
GraphQL APIs. ACM Trans. Web 18, 1, Article 14 (January 2024), 41 pages.

https://doi.org/10.1145/3609427

1 INTRODUCTION I

EvoMaster Random-Greedy PPO

State-of-the-art GraphQL Wendigo w/ Wendigo-Random w/ Wendigo w/
Fuzzer andom Action Selection Greedy State Selection PPO Action selection

\\‘ DVGA V

DVGA Logo Source: https://github.com/dolevf/ Dice Image Credit: SDXL-Lightning
Damn-Vulnerable-GraphQL-Application PPO Logo Source: https://openai.com

LDoS Query Discovery

Evaluation Highest Response Times

Protected

- (Depth=5, Height=5)

- Unprotected
(Depth=10, Height=100)

Better

Response Time

EvoMaster* Random Random-Greedy PPO

For reference the PPO results converted to minutes are 3m28s for 208s and 27m30s for 1650s.

17

LDoS Attack Impact

Evaluation
Attack Queries Required for DoS

m Protected
(Depth=5, Height=5)

m Unprotected
(Depth=10, Height=100)

Better

Queries per Hour

EvoMaster Random Greedy Random PPO

18

Conclusion

Recap

 Combines multiple DoS attack vectors in GraphQL.
* Qutperforms EvoMaster, an existing SOTA fuzzing tool.
 Code has been publicly released.

 DRL approach designed for black-box DoS query discovery.

& EvoMaster Capabilities

 Wendigo
Circular Objects Future Work
Array-Based Field Extended Capabilities
Query Batching Duplication « Other DRL ApprOaCheS
Object Limit e * Evolutionary Baseline
Overriding Overloading ° Open_SOurce Projects
Basic Queries

ING'S
College

LONDON

The
Alan Turing
Institute

Supported by

e

Q\/’ Universita
% > diCatania

ING'S
Thank you College

LONDON

Wendigo: Deep Reinforcement Learning for Denial-of-Service
Query Discovery in GraphQL

Website

The
Alan Turing
Institute

Supported by

Shae McFadden'.2, Marcello Maugeri3.1, Chris Hicks?, Vasilios Mavroudis?, Fabio Pierazzi LI

e

1King’s College London, 2The Alan Turing Institute, 3University of Catania $§\/1 Universita
% > diCatania

Usage of DoS Defences
GraphQL

B} Never heard of it " Know about it B Have used it

Persisted Queries
Query Timeouts
Query Rate Limiting
Query Depth Limiting

Query Cost Analysis

Results from a 2022 survey of over two-thousand developers.

Source: https://2022.stateofgraphgl.com/

DoS Attack Vectors

GraphQL Array-Based
_ _ Query Batching
Field Duplication Alias Overloading
[query {
query { query { pastes {
pastes { pastes { content
content C1: content)
content C2: content }, query {
ees e pastes {
content C100: content content
content C101: content }
/ /)
/ /]
Duplicate to cause the server to Alternative form of duplication Duplication of entire queries in a
repeat computation. under new return names. singular request.

Attack Vector Source: N. Aleks, et al. Black Hat GraphQL.: Attacking Next Generation APIs.

DoS Attack Vectors

GraphQL

/

Object Limit Overriding

query {

pastes (limit: 1000) {
content
/

Circular Objects

query {
pastes {

owner {
pastes {
content
/

/
/
/

Increase pagination arguments to increase the

number of objects to be returned.

Recursive cycle of object references in
query resulting in a recursive expansion
when generating response.

Attack Vector Source: N. Aleks, et al. Black Hat GraphQL.: Attacking Next Generation APIs.

Unprotected Setting

Response Time (seconds)

1 —— LEvoMaster - Black-Box
16001 —— Wendigo - Random-Greedy

...7 —— Wendigo - Random

3001 —— Wendigo - PPO

L A N o el g 0, =) o BBy g/
0 100 200 300
Step

Evaluates an application with no DoS mitigations in place.
Max_Depth=10, Max_Height=100, Multiplier=10

Protected Setting

DO DO

MO s Y 00 O RO i O 00 O B

DG IGDIGD GG GG GGG G

—— [EvoMaster - Black-Box
—— Wendigo - Random-Greedy

—=— Wendigo - Random
Wendigo - PPO

l
| I qnlu ,,‘,| .
umqu

” ‘l '“"' " H|H 1;] lm%l“"m t HH I‘!m i Ivr o “' IW | l” ,vi,'!.' :'.u’lhl ”' I l!l)“l"l' H. wum UW | w ”m
|1l weing i ‘ ; Lk { /i “ l ‘ Vi ulll e 18ls !Nl ”l ‘

Risndese 5' “‘ ; fzimllﬂll.ﬂnl.'l AN ll’|||1 ”I.

0 100 200 300 400 500 6OG 700 800 900 1000 1100 1200

Step

H,

Response Time (seconds)

Evaluates an application with basic DoS mitigations in place.
Max_Depth=5, Max_Height=5, Multiplier=1

LDoS Attack Results

Approach Setting Highest Response Time || Attack Queries Denial
PPO UNPROTECTED 1649.57s 2 Queries 99.998%
PROTECTED 208.00s 178 Queries 99.852%
Random UNPROTECTED 70.74s 52 Queries 99.956%
PROTECTED 81.61s 594 Queries 99.847%
Random Greed UNPROTECTED 65.75s 65 Queries 99.962%
y PROTECTED 57.77s 1169 Queries 99.726%
EvoMast UNPROTECTED 23.96s 1222 Queries 99.729%
VORIastet PROTECTED 29.68s 1434 Queries | 99.674%

Determine the number of queries required to perform a DoS attack utilizing the

percentage of denied benign user’s query period for calibration.

